Improving reproductive health supply chain design through rapid and flexible cost modeling

Dorothy Thomas – Associate, Health Systems, VillageReach
Michael Krautmann – Research Manager, William Davidson Institute (WDI)

Reproductive Health Supplies Coalition Webinar | July 2019
Agenda

1. **Overview** (10 min)
 What questions can the tool help address?

2. **Technical Details** (10 min)
 How to make the tool rapid and easier to use?

3. **Validating Accuracy** (5 min)
 Do results match those of other methods?

4. **Demonstration** (20 min)
 What does using the tool look like in practice?

5. **Questions & Answers** (15 min)
Problem: Supply chains (SCs) are key to health program success, but identifying efficient SC designs is a complex and expensive process.

Challenge 1: Lack of SC cost data for strategic decision-making.
- Detailed costing analyses require significant time and resources.
- Programs often lack reference points to understand what SC activities *should* cost.

Challenge 2: Difficulty evaluating *potential* design improvements.
- Cost studies and SC data systems typically provide snapshot of *current* SC design.
- Software to model the impact of future SC design changes can be resource intensive and require specialized skills.
Problem: Supply chains (SCs) are key to health program success, but identifying efficient SC designs is a complex and expensive process

UNICEF estimates a budget of $250,000 to $500,000 over 3-6 months for one country to analyze potential SC re-design options.

Data collection and modeling are the primary cost contributors.

WDI and VillageReach created a rapid modeling tool to address barriers to conducting SC design/cost analyses

Many potential use cases where high-level, directional insights are useful, but where time and resources are limited for detailed analysis:

- **Streamlining** initial stages of SC redesign process
- **Addressing** questions in real-time during a workshop setting
- **Validating** donor budgets or logistics provider bids
- **Advocating** for SC funding or improvements

By addressing these use cases we hope to **expand opportunities** to identify and implement innovative supply chain design changes.
The user creates a supply chain scenario, and the tool estimates operating cost and efficiency of that scenario.

1. Estimated Annual Operating Cost: $1,552,216
2. Total Volume (m³) Delivered to Health Facilities: 2,005
3. Total Value of Procured Commodities: $12,300,000

What can these estimates tell us?

1. How much overall funding the supply chain requires to operate (approx.)
2. Which locations (national, regional, facility) require the most funding
3. Which functions (storage, transport, management) require the most funding
4. Are we using existing storage, vehicles, and labor efficiently? Do we have too many or too few of these resources?
The tool lets users quickly create and compare multiple scenarios/options

- Copy and paste worksheets to create new scenarios
- Change specific SC design or country context input values
- Changes are instantly reflected in output costs and statistics

<table>
<thead>
<tr>
<th>Key Input Factors</th>
<th>Baseline Current System</th>
<th>More Frequent Deliveries</th>
<th>Eliminate District-level Tier</th>
<th>Use IPM-style last mile distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Area</td>
<td>100,000 sq. km.</td>
<td>100,000 sq. km.</td>
<td>100,000 sq. km.</td>
<td>100,000 sq. km.</td>
</tr>
<tr>
<td># Health Facilities</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td># SC Tiers</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td># Order Periods/yr</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Last Mile Distribution</td>
<td>Point-to-Point (facility staff travel to district)</td>
<td>Point-to-Point (facility staff travel to district)</td>
<td>Point-to-Point (facility staff travel to district)</td>
<td>Route-Based from District District Vehicles (15 Land Cruisers)</td>
</tr>
<tr>
<td>Type and # of vehicles</td>
<td>Health Facility vehicles; 50% motorcycles, 50% Land Cruisers</td>
<td>Health Facility vehicles; 50% motorcycles, 50% Land Cruisers</td>
<td>Health Facility vehicles; 50% motorcycles, 50% Land Cruisers</td>
<td></td>
</tr>
<tr>
<td>MOH Salaries</td>
<td>Nurse: $3.00/hr District Supervisor: $6.00/hr Warehouse worker: $5.00/hr</td>
</tr>
<tr>
<td>Fuel Price per liter</td>
<td>$1.50</td>
<td>$1.50</td>
<td>$1.50</td>
<td>$1.50</td>
</tr>
<tr>
<td>Operating Cost / year</td>
<td>$1.3m</td>
<td>$1.5m</td>
<td>$1.1m</td>
<td>$1.3m</td>
</tr>
</tbody>
</table>
The outputs from this tool could help inform several technical and advocacy questions

Supply Chain Financing

- How much funding should be allocated to supply chain activities each year?
- Which supply chain activities are the biggest drivers of cost? Where/with whom do these activities take place?
- Where are the largest current funding gaps, i.e., the people/places with the biggest mismatch between SC activities and SC funding?

Supply Chain Design

- How much program funding could potentially be freed up by implementing a more efficient supply chain design?
- What types of supply chain design changes have the biggest impact on overall cost and efficiency?
Three primary tool features enable rapid, high-level cost estimates across a wide range of country and SC design scenarios

- **Proxy data** from other health SC cost studies provide benchmarks and enable quick estimation of missing data inputs
- **Standardized menu of SC design options** provide flexibility to model diverse global health distributions strategies
- **Simplified SC network structure** reduces data requirements and enable real-time calculation and updating of results
1. **Proxy and reference data** in pre-formatted templates enable quick estimation of missing data points

Two ways to use proxy data:

1. **Load directly into model**
 - Pre-formatted templates with data from existing global health SC costing studies
 - Load template data set and customize fields where better data are available

2. **As reference point for estimating less common input values, such as:**
 - Circuity Factor (Ratio of road distance to straight-line map distance in a network)
 - Overall demand volume in cubic meters
 - Warehousing construction/utilities prices

Table: Data Templates

<table>
<thead>
<tr>
<th>Tier 1 (Highest Level e.g. Central Medical Store)</th>
<th>Tier 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter your own value if known</td>
<td>Value used in Model</td>
</tr>
<tr>
<td>Data Template #1</td>
<td>390,757</td>
</tr>
<tr>
<td>Total Land Area (km^2) covered by facilities in each supply chain tier</td>
<td>390,757</td>
</tr>
<tr>
<td>Number of facilities at each supply chain tier</td>
<td>1</td>
</tr>
<tr>
<td>Average number of order periods per year per product</td>
<td>4</td>
</tr>
<tr>
<td>Average distance (km) between adjacent facilities at each tier</td>
<td>0</td>
</tr>
<tr>
<td>Average travel speed (km/hr) between adjacent facilities at each tier</td>
<td>80</td>
</tr>
<tr>
<td>Assumed expiry/wastage rate (% of product coming into a warehouse that does not leave due to expiry/wastage/pilferage/etc)</td>
<td>5%</td>
</tr>
<tr>
<td>Inventory Policy</td>
<td></td>
</tr>
<tr>
<td>Minimum desired stock level per commodity (# order periods of stock)</td>
<td>2</td>
</tr>
<tr>
<td>Maximum desired stock level per commodity (# order periods of stock)</td>
<td>4</td>
</tr>
<tr>
<td>Labor</td>
<td></td>
</tr>
<tr>
<td>Profession of person who typically picks and processes inventory in warehouse (Select from Tier 1)</td>
<td>Warehouse Floor worker - Midlevel</td>
</tr>
</tbody>
</table>

Screenshot example: Filling data gaps using proxy data template

- Select template to use as base data source
- Override proxy data where better information exists (e.g. country size, # clinics)
- Rely on proxy data where country/SC-specific data points are lacking (e.g. travel speeds, expiry rate)
2. Standardized SC design choices provide flexibility to model most current global health distribution strategies

User can adjust several design parameters to replicate their program’s SC design:

- Number of SC tiers (levels) that manage storage & distribution
- Frequency of delivery / length of order period
- Inventory policy / safety stock levels
- Ordering & delivery travel patterns
- Types of vehicles
- Timing of ordering & delivery (i.e. separate vs. simultaneous)
- Roles and responsibilities for storage, data capture, and delivery functions

Deep-dive example: Travel patterns in global health SC designs

Point-to-point travel
- Distribution from central to regional warehouses across most systems
- Systems where SDP staff are responsible for ordering or delivering their facility’s products (e.g. many HIV/AIDS SCs, cost recovery-based models in francophone West Africa)

Route-based travel
- Mobile warehouse-style models (e.g. Informed Push, Direct Logistics System)
- Centrally-managed ordering and/or delivery (e.g. Assisted Pull in Zimbabwe, Info Capture & Direct Delivery in Nigeria, Direct Delivery in Tanzania)
3.1 Simplified representation of SC network considers overall facility averages rather than individual facility differences

<table>
<thead>
<tr>
<th>Facility Size</th>
<th>Real-life systems: Some facilities larger than others, experience higher product demand levels</th>
<th>Model Assumes: All facilities within a tier have the same demand, equal to the per-facility average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance Between Facilities</td>
<td>Some facilities more isolated than others (i.e. farther from supplier and other facilities)</td>
<td>Facilities within a tier are evenly distributed throughout the geographic area</td>
</tr>
<tr>
<td>Demand Over Time</td>
<td>Demand varies from one order period to the next, depending on a number of factors</td>
<td>Same demand for every order period, equal to overall average per-period demand</td>
</tr>
</tbody>
</table>

Tradeoffs of this modeling approach:
- **Potential for bias** if actual geography or demand distribution is unusual or highly variable (though bias likely consistent across most scenarios)
- Represents “best-case” estimate of costs, since variability and uncertainty are often a driver of inefficiency in supply chain operations

Advantages of this modeling approach:
- **Lower data requirement**: Don’t need details on individual facilities & orders
- **Computationally efficient**: Don’t need to calculate hundreds/thousands of individual movements and activities, facilitating quicker multi-scenario analysis
3.2 Additional simplifying assumptions: Model assumes a supply chain under stable operating conditions, with good implementation quality

Good implementation quality:

- Model captures how a supply chain design *should* behave under ideal implementation conditions
- In real world, implemented system may be less efficient than original design
 - Adherence to operating procedures
 - Scheduling transportation
 - Managing warehouse products & capacity
- Model incorporates *limited* types of inefficiency (e.g. product expiry/wastage; additional travel)

Stable operating conditions:

- Model estimates *long-term annual cost* to operate a system of the specified design
- Does NOT include initial transition/start-up costs, e.g. developing new training materials and SOPs
- Model assumes that any design changes happen instantly. It does NOT capture any temporary transitions
VALIDATING TOOL ACCURACY
How to test the impact of these assumptions on model accuracy? Answer: validation exercise

OBJECTIVE

Understand potential accuracy of modeling tool in order to 1) deploy it most effectively and 2) identify opportunities for improving modeling approach

KEY QUESTIONS

- How accurate can the model results be under ideal conditions?
- How does that accuracy level change as supply chain data quality deteriorates?

APPROACH

- Use existing SC costing study results as “gold standard” to validate model predictions
 - Metric used is Mean absolute percent error (MAPE)

- For studies with greater clarity on data quality, split into two sub-studies based on quality of individual data points, and alignment with model calculation approach
 - *Best-case scenario* – Compare costs only where confident in quality/alignment
 - *Rapid scenario* – Compare all data points, even if misaligned with model
Results from initial validation exercises

Model and cost studies yield similar results, improving as cost lines are aggregated

Cost Studies included in comparison:
- Senegal Informed Push Model
- Guatemala - Quiché
- Guatemala - Alta Verapaz
- Southern Africa-Integrated SC Pilot

Model accuracy depends on alignment and quality of source data

- MAPE (%) per Cost Line Item
 - 6.0% (Excluding misaligned data outputs)
 - 22.1% (Including misaligned data outputs)
- MAPE (%) per Tier/Category
 - 3.9% (Excluding misaligned data outputs)
 - 14.2% (Including misaligned data outputs)
- Overall MAPE (%)
 - 0.9% (Excluding misaligned data outputs)
 - 12.9% (Including misaligned data outputs)
Key takeaways from initial validation exercise

• Level of error generally aligned with initial expectations
 – Approach can be very accurate if data/implementation quality are high (1-6% MAPE).
 – Reliability decreases as input data accuracy deteriorates (12-22% MAPE)

• Many errors consistent across scenarios, minimizing impact on directional insights

• Additional validation testing could improve results in several ways:
 – Develop a larger sample & more robust picture of overall tool accuracy
 – Test accuracy correlation with specific factors
 • Does error get worse/better for specific types of countries or SC designs?
 • Does error get worse/better for specific cost line items?
TOOL DEMONSTRATION
Example problem and analysis plan for tool demonstration

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are a regional program manager in a Southern African country. You expect a large increase in demand for health products over the next five years, due shifting population and rollout of a social health insurance program.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Can the current supply chain handle that increase in demand?</td>
</tr>
<tr>
<td>2. If not, what are some efficient ways to address this increased demand?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenarios to Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario Name</td>
</tr>
<tr>
<td>1 Baseline</td>
</tr>
<tr>
<td>2 Baseline + High Demand</td>
</tr>
<tr>
<td>3 Monthly Ordering + High Demand</td>
</tr>
<tr>
<td>4 More Storage + High Demand</td>
</tr>
</tbody>
</table>
DISCUSSION
Next steps and discussion

• Next Steps
 – Version 1.0 of the tool and resources are available online for download
 • https://www.villagereach.org/resources/
 • WDI and RHSC websites – coming soon!
 – Will also disseminate via email to RHSC working groups and IAPHL once a few formatting improvements have been finalized

• Questions? Email us at:
 – Dorothy Thomas: dorothy.thomas@villagereach.org
 – Michael Krautmann: mpkrautm@umich.edu